Limit theorems for the fractional nonhomogeneous Poisson process

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Poisson Process

For almost two centuries, Poisson process with memoryless property of corresponding exponential distribution served as the simplest, and yet one of the most important stochastic models. On the other hand, there are many processes that exhibit long memory (e.g., network traffic and other complex systems). It would be useful if one could generalize the standard Poisson process to include these p...

متن کامل

Central Limit Theorems for Poisson Hyperplane

We derive a central limit theorem for the number of vertices of convex polytopes induced by stationary Poisson hyperplane processes in Rd . This result generalizes an earlier one proved by Paroux [Adv. in Appl. Probab. 30 (1998) 640–656] for intersection points of motion-invariant Poisson line processes in R2. Our proof is based on Hoeffding’s decomposition of U -statistics which seems to be mo...

متن کامل

Central limit theorems for double Poisson integrals

Motivated by second order asymptotic results, we characterize the convergence in law of double integrals, with respect to Poisson random measures, toward a standard Gaussian distribution. Our conditions are expressed in terms of contractions of the kernels. To prove our main results, we use the theory of stable convergence of generalized stochastic integrals developed by Peccati and Taqqu. One ...

متن کامل

Limit Theorems for the Shifting Level Process

This paper studies the asymptotic properties of moment estimators for the general shifting level process (SLP). A law of large numbers and a weak convergence theorem are obtained under conditions involving the unobservable processes which make up SLP. Specific conditions about those underlying processes are acided to give explicit results, applicable to a large class of moment estimators. Actua...

متن کامل

Full characterization of the fractional Poisson process

The fractional Poisson process (FPP) is a counting process with independent and identically distributed inter-event times following the Mittag-Leffler distribution. This process is very useful in several fields of applied and theoretical physics including models for anomalous diffusion. Contrary to the well-known Poisson process, the fractional Poisson process does not have stationary and indep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Probability

سال: 2019

ISSN: 0021-9002,1475-6072

DOI: 10.1017/jpr.2019.16